Molecular dissection of the male germ cell lineage identifies putative spermatogonial stem cells in rhesus macaques
نویسندگان
چکیده
BACKGROUND The spermatogonial stem cell (SSC) pool in the testes of non-human primates is poorly defined. METHODS To begin characterizing SSCs in rhesus macaque testes, we employed fluorescence-activated cell sorting (FACS), a xenotransplant bioassay and immunohistochemical methods and correlated our findings with classical descriptions of germ cell nuclear morphology (i.e. A(dark) and A(pale) spermatogonia). RESULTS FACS analysis identified a THY-1+ fraction of rhesus testis cells that was enriched for consensus SSC markers (i.e. PLZF, GFRalpha1) and exhibited enhanced colonizing activity upon transplantation to nude mouse testes. We observed a substantial conservation of spermatogonial markers from mice to monkeys [PLZF, GFRalpha1, Neurogenin 3 (NGN3), cKIT]. Assuming that molecular characteristics correlate with function, the pool of putative SSCs (THY-1+, PLZF+, GFRalpha1+, NGN3+/-, cKIT-) comprises most A(dark) and A(pale) and is considerably larger in primates than in rodents. It is noteworthy that the majority of A(dark) and A(pale) share a common molecular phenotype, considering their distinct functional classifications as reserve and renewing stem cells, respectively. NGN3 is absent from A(dark), but is expressed by some A(pale) and may mark the transition from undifferentiated (cKIT-) to differentiating (cKIT+) spermatogonia. Finally, the pool of transit-amplifying progenitor spermatogonia (PLZF+, GFRalpha1+, NGN3+, cKIT+/-) is smaller in primates than in rodents. CONCLUSIONS These results provide an in-depth analysis of molecular characteristics of primate spermatogonia, including SSCs, and lay a foundation for future studies investigating the kinetics of spermatogonial renewal, clonal expansion and differentiation during primate spermatogenesis.
منابع مشابه
P-130: Piwil2 Reprograms Human Fibroblasts to Germ Cell Lineage
Background The piwi family genes are highly conserved during evolution and play a crucial role in stem cell self-renewal, gametogenesis, and RNA interference in diverse organisms ranging from Arabidopsis to humans. Piwil2, also known as Hili, is one of the four human homologues of piwi. Piwil2 was found in germ cells of adult testis, suggesting that this gene functions in spermatogonial stem ce...
متن کاملP-50: Elongating and Elongated Spermatids Manufactured In Vitro from Non-Human Primate Pluripotent Stem Cells
Background: We have recently shown that human embryonic (hESCs) and induced pluripotent stem cells (hiPSCs) can differentiate into advanced spermatogenic cells including round spermatids by in vitro culture (Easley et al., Direct differentiation of human pluripotent stem cells into haploid spermatogenic cells. Cell Reports 2, 440-446 2012) and also, in collaboration, that rhesus spermatogonial ...
متن کاملSpermatogonia stem cells: A new pluripotent source for repairment in regenerative medicine
Recently new reports have proved the pluripotency of spermatogonial stem cells (SSCs) derived from male gonad. This pluripotent stem cells resembled Embryonic stem cells recognized as Embryonic Stem like cells (ES like cells). ES like cells forms sharp edge colonies that are immunopositive to pluripotency markers and have differentiation capacity to Ectodermal, Mesodermal and Endodermal layers....
متن کاملComparing the Expression Levels of Alkaline Phosphatase, Gfra1, Lin28, and Sall4 Genes in Embryonic Stem Cells, Spermatogonial Stem Cells, and Embryonic Stem-Like Cells in Mice
Background and purpose: Spermatogenesis is a well-organized process that is influenced by a variety of factors. Alkaline phosphatase, and Gfra1, Lin28, and Sall4 genes are among the key players in this interconnected process. This study aimed to investigate the expression levels of Gfra1, Lin28, and Sall4 genes in embryonic, spermatogonial, and embryonic stem-like (ES-like) cells in mice. Mate...
متن کاملSpermatogonial Stem Cells: Biology, Isolation, Culture, Characterization, and Practical Perspectives
Spermatogonial stem cells (SSCs) also known as germ stem cells (GSCs) are the basis of spermatogenesis process in the testis. Furthermore, they are also valuable cells with different applications in developmental biology, transgenesis technology, and clinic. Understanding the new findings related to the cell and molecular biology of SSCs and the methods for isolation and maintenance of these ce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 24 شماره
صفحات -
تاریخ انتشار 2009